Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Issues Mol Biol ; 44(5): 2122-2138, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1869490

ABSTRACT

Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE-AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs' release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE-AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE-AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.

2.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862814

ABSTRACT

The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011-2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism's condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.


Subject(s)
Lung Diseases , Proteome , Sputum , Biomarkers/metabolism , Humans , Lung/metabolism , Lung Diseases/diagnosis , Proteome/metabolism , Proteomics/methods , Sputum/chemistry
3.
Front Immunol ; 12: 663303, 2021.
Article in English | MEDLINE | ID: covidwho-1291384

ABSTRACT

The release of neutrophil extracellular traps (NETs), a process termed NETosis, avoids pathogen spread but may cause tissue injury. NETs have been found in severe COVID-19 patients, but their role in disease development is still unknown. The aim of this study is to assess the capacity of NETs to drive epithelial-mesenchymal transition (EMT) of lung epithelial cells and to analyze the involvement of NETs in COVID-19. Bronchoalveolar lavage fluid of severe COVID-19 patients showed high concentration of NETs that correlates with neutrophils count; moreover, the analysis of lung tissues of COVID-19 deceased patients showed a subset of alveolar reactive pneumocytes with a co-expression of epithelial marker and a mesenchymal marker, confirming the induction of EMT mechanism after severe SARS-CoV2 infection. By airway in vitro models, cultivating A549 or 16HBE at air-liquid interface, adding alveolar macrophages (AM), neutrophils and SARS-CoV2, we demonstrated that to trigger a complete EMT expression pattern are necessary the induction of NETosis by SARS-CoV2 and the secretion of AM factors (TGF-ß, IL8 and IL1ß). All our results highlight the possible mechanism that can induce lung fibrosis after SARS-CoV2 infection.


Subject(s)
COVID-19/physiopathology , Epithelial-Mesenchymal Transition , Extracellular Traps/metabolism , Neutrophils/metabolism , Adult , Biopsy , Bronchoalveolar Lavage Fluid/cytology , COVID-19/complications , COVID-19/immunology , Cell Line , Epithelial Cells/pathology , Humans , Lung/pathology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism
4.
BMC Pulm Med ; 20(1): 301, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-925848

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. METHODS: Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n = 28) and to the Intermediate Medicine Ward (IMW) (n = 5). We analyze the differential cell count, ultrastructure of cells and Interleukin (IL)6, 8 and 10 levels. RESULTS: ICU patients showed a marked increase in neutrophils (1.24 × 105 ml- 1, 0.85-2.07), lower lymphocyte (0.97 × 105 ml- 1, 0.024-0.34) and macrophages fractions (0.43 × 105 ml- 1, 0.34-1.62) compared to IMW patients (0.095 × 105 ml- 1, 0.05-0.73; 0.47 × 105 ml- 1, 0.28-1.01 and 2.14 × 105 ml- 1, 1.17-3.01, respectively) (p < 0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p < 0.01, IL8 p < 0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p < 0.1) or antivirals (p < 0.05). CONCLUSIONS: Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Coronavirus Infections/immunology , Inflammation/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocytes/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Drug Combinations , Female , Humans , Hydroxychloroquine/therapeutic use , Intensive Care Units , Interleukin-10/immunology , Italy , Leukocytes, Mononuclear/virology , Lopinavir/therapeutic use , Lung/cytology , Lung/virology , Lymphocytes/immunology , Male , Microscopy, Electron, Transmission , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial/methods , Ritonavir/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , Virion/metabolism , Virion/ultrastructure , COVID-19 Drug Treatment
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-49968.v5

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. Methods: : Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n=28) and to the Intermediate Medicine Ward (IMW) (n=5). We analyze the differential cell count, ultrastructure of cells and Interleukin(IL)6, 8 and 10 levels. Results: : ICU patients showed a marked increase in neutrophils (1.24 x 10 5 ml -1 , 0.85-2.07), lower lymphocyte (0.97 x 10 5 ml -1 , 0.024-0.34) and macrophages fractions (0.43 x 10 5 ml -1 , 0.34-1.62) compared to IMW patients (0.095 x 10 5 ml -1 , 0.05-0.73; 0.47 x 10 5 ml -1 , 0.28-1.01 and 2.14 x 10 5 ml -1 , 1.17-3.01, respectively) (p<0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p<0.01, IL8 p<0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p<0.1) or antivirals (p<0.05). Conclusions: : Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Subject(s)
Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Pulmonary Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL